w^2+5=150

Simple and best practice solution for w^2+5=150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w^2+5=150 equation:



w^2+5=150
We move all terms to the left:
w^2+5-(150)=0
We add all the numbers together, and all the variables
w^2-145=0
a = 1; b = 0; c = -145;
Δ = b2-4ac
Δ = 02-4·1·(-145)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{145}}{2*1}=\frac{0-2\sqrt{145}}{2} =-\frac{2\sqrt{145}}{2} =-\sqrt{145} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{145}}{2*1}=\frac{0+2\sqrt{145}}{2} =\frac{2\sqrt{145}}{2} =\sqrt{145} $

See similar equations:

| x=6x+12 | | 17=t+15 | | 0+2y=26 | | 7=25+3x | | 1/40+x=1/8 | | 16-2t=9=4t | | 119+3y+4=180 | | 6x+12=-8x-19 | | 9x-7x-12+10x=12x-6-10x | | 10w+19+3w=6(9 | | 5x+13=−4x−18 | | 4,982=47(p+35) | | 14x-(6x+20)=60 | | 1/2×x=7 | | -11x-9=25x-6(x-9) | | -9+y=-11 | | -8n+2=9-7n | | 8x+15=3x+80 | | -5+-5r=10 | | -6+y=37 | | 10r+18=-26+10r | | 8n+7=–6+8n | | 1/9x+7=0 | | X^2-1÷x=2 | | 2x^2+3x-2=12 | | 1/9x+4=-1 | | 0+y=37 | | -8-6f=-8f | | 2.32=2z | | 1/9x+3=8 | | -2x-12=16x+2 | | t-547=-382 |

Equations solver categories